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Now-Newtonian Flow Between Concentric Cylinders 
and the Effects of Finite Compressibility 1 

J. C. Rainwater 2 and H. J. M. Hanley 2 

Previous studies of the flow of a model soft-sphere liquid between rotating ver- 
tical concentric cylinders have predicted an enhanced depression of the free sur- 
face at the inner cylinder and the necessity and importance of accounting for 
finite compressibility. In those studies the rheological properties of the liquids 
were taken directly from computer simulations, whereas in the present work the 
liquid properties are altered in a controlled manner and the fluid dynamics 
problems is again solved numerically and self-consistently with the original 
boundary conditions. Specific alterations include the removal of all non-New- 
tonian properties, the change in sign of a generalized viscosity to create a rod- 
climbing or Weissenberg effect, and the removal of shear dilatancy or increase in 
pressure with shear. Our conclusion is that nonzero compressibility needs to be 
taken into account only in the presence of shear dilatancy. 

KEY WORDS: compressibility; concentric cylinder; non-Newtonian flow; 
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1. I N T R O D U C T I O N  

Recently we have examined the problem of non-Newtonian flow between 
vertical, rotating concentric cylinders [1]. The procedure was somewhat 
different from the usual in that we approached the problem given the trans- 
port coefficients of the fluid, rather than inferring the coefficients from the 
macroscopic behavior resulting from the flow. The fluid in question was the 
model soft-sphere inverse-twelve system whose properties are available 
from computer simulation, nonequitibrium molecular dynamics (NEMD) 
[2]. The assumptions invoked in our solution are discussed in detail in 
Ref. 1. 

i Paper presented at the Ninth Symposium on Thermophysical Properties, June 24-27, 1985, 
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It is well known that, when the outer cylinder is stationary, a New- 
tonian-liquid free surface exhibits a small depression at the inner cylinder 
[3], whereas for typical non-Newtonian liquids (such as polymer melts 
and polymer solutions), the free surface exhibits a Weissenberg effect or 
climbing of the inner cylinder [3, 4]. Our calculations for the soft-sphere 
fluid demonstrated behavior not predicted by previous theoretical treat- 
ments of this flow problem [5]. In particular, the model liquid exhibited an 
enhanced depression at the inner cylinder that was much larger in 
magnitude than the Newtonian depression under equivalent conditions. 
Additionally, we found that the finite compressibility of the liquid, neglec- 
ted in previous analyses, needed to be included explicitly in order to make 
the solution self-consistent. 

Using the numerical methods developed in Ref. 1, we examine in this 
paper the consequences of certain changes in the fluid properties, so that 
the causes of the enhanced depression and sensitivity to compressibility are 
isolated. Special cases considered here include the Newtonian liquid with 
finite compressibility, the reversal in sign of a "generalized viscosity" t/o, 
which permits a Weissenberg effect, and the non-Newtonian liquid in the 
absence of shear dilatancy (increase in pressure with shear) [6]. Our 
overall conclusion is that the sensitivity of the flow profile to finite com- 
pressibility is closely tied to the presence of shear dilatancy. 

2. PARAMETERS OF THE F L O W  P R O B L E M  

Following the notation of Joseph and Fosdick [-5], we denote the 
inner cylinder radius by a, the outer cylinder radius by b, the angular 
velocity of the inner cylinder by f2, the ratio of angular velocities of the 
outer to inner cylinders by 2, the cylindrical coordinate system by {r, 0, z}, 
the stream velocity by u(r), and the free-surface height profile by h ( r ) .  The 
pressure tensor P(r) has components Pij, where i, j =  r, 0, z. 

Soft-sphere fluid simulations, however, have been performed in Car- 
tesian coordinates {x, y, z}, with unit vectors ~x, Oy, ~z, for the Couette 
flow u(r)=VYdx, where V is the shear rate. The pressure tensor P(r) is 
usually discussed with respect to the soft-sphere fluid NEMD simulations 
[2] in terms of the following alternate variables: 

1 
P = 5 (Pxx + P,y + Pzz) (1) 

tl + = - P x y / 7  = - P y x / 7  ( 2 )  
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1 
- = - ~ (Px~ - C~)/7 (3) 

1 1 P y , ) ] / 7  = I zz-  (Pxx+ (4) 

By symmetry, Pxz = Pzx = Pyz = Pzy = 0. The generalized pressure p and 
generalized viscosities ~/i are functions of the temperature, density, and 
shear rate, although the temperature dependence is not required since the 
steady-state flow is assumed to be isothermal. 

The 108 (N) particle soft-sphere fluid was studied at the state point 
X =  0.7, where X =  p/(~/2 T 1/4) with p = N/V, the density, and T the tem- 
perature. In this paper we work with reduced units; see Ref. 2. T was set at 
1/4 so X--  p, which is 7/8 of the freezing density. For  these conditions the 
shear-rate dependences of the pressure and the shear viscosity, ~1 +, can be 
represented by the expressions 

p = 2.375 + 0.355 7 3/2 (5) 

r/+ = 1.012-0.365 71/2 (6) 

and the density dependences are given in Ref. 1. The shear-rate dependen- 
ces of q and qo are given by an approximate fit to the molecular dynamics 
data: 

~/_ = 0.02381 71/2/(0.1789 + 7 3/2) (7) 

qo = 0.04205 73/2/(0.07794 + 75/2) (8) 

The density dependences are not known but the derivatives are inferred via 
a relaxation-time hypothesis [-7] to be 

# l n ~ _ 8 1 n ~ / o _ 2 8 1 n ~ / +  8 1 n p  (9) 
8 In p 8 in p 8 In p 8 In p 

in some detail the particular case a=0 .2 ,  In Ref. 1 we examined 
b = 2.0, (2 = -0.3,  and 2 = 0. 

3. EQUATIONS OF M O T I O N  

It is assumed, following Ref. 1, that the pressure tensor depends only 
on the shear rate, not on vorticity or higher velocity gradients, and that 
deviations from tangentially symmetric flow [u(r)=uo(r)6o] may be 
neglected. Under these assumptions, the results for planar shear flow may 
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be applied directly to cylindrical shear flow, with x associated with 0 and y 
with r. The equations of motion then may be compactly represented by the 
following set of coupled nonlinear algebraic and integral equations: 

B 
7(r)-r2q+[y(r),p(r)]; B = constant (10) 

uo(r)= f2r + r I ---Tar (11) r 

rrr(r)=Prr(a)_t_fa'dr ' #p(r')[uo(r')] 2 2y(r')r/ [7(r'),p(r')].} (12) 
r~ r I 

P~z(r) = Prr(r)- 7(r){2r/o[y(r), p(r)] + r/ [7(r), p(r)]  } (13) 

4 
Pzz(r) = p[7(r), p(r)] - 5  7(r) r/~ p(r)] (14) 

with the boundary condition 

(b T(r) 
uo(b)=g2b+b< =f22b (15) 

The position-dependent density is written as 

p(r) = p + 6p(r) (16) 

where ~ is the average density, and it is assumed that the density dependen- 
ces o f p  and qi may be linearized about 6p; note also that 

fs @(r) (17) dr ~ 0 

The free-surface height profile is 

h(r) = [-P~z(r) + C]/pg, C = constant (18) 

where g is the acceleration of gravity, so that the determination of P=(r) is 
essentially equivalent to the determination of h(r). 

In Ref. 1, an algorithm was described for the solution of Eqs. (10)-(17) 
by means of numerical integration, numerical root finding, and repeated 
iteration. Details of the method are not repeated here. 
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4. SPECIAL CASES 

4.1. Incompressible Liquid 

The limit of an incompressible liquid is defined to be (Op/•p) ~ ~. It 
is, in practice, further implied that (&li/OP), i= +, - ,  0 is finite. When 
6p(r) is small we have the linearized equations 

rli[7(r), p(r)] = qi[7(r), fi] + \ c~p ) 6p(r) (20) 

In the incompressible limit, (c~p/c~p) goes to infinity and 6p(r) goes to 
zero in such a way that the product (c~p/P,p) 6p(r) is finite. However, in the 
same limit the product (&ljc3p)6p(r) vanishes. Therefore, a solution to 
Eqs. (10)-(15) may be obtained by replacing qi[7(r), p(r)] with r/i[7(r), fi], 
i.e., by neglecting the density dependence of the generalized viscosities, in 
Eqs. (10), (12), and (13), and by choosing a function for the product 
(~?p/c~p) 6p(r) such that Eq. (14) is in conformity with Eq. (13). 

Conventional rheological theory [3] assumes liquids to be incom- 
pressible. In this case, Eq. (14) in effect decouples from Eqs. (10) (13), and 
therefore shear dilatancy, i.e., the fact that (~3p/c37) > 0, does not contribute 
to the solution of the flow problem. However, as is shown in Ref. 1, such a 
decoupling is not warranted for the soft-sphere liquid. The key parameter is 
not the absolute magnitude of c~p/c~p but, rather, the ratio of ~3 in p/c~ In p to 
01nqj01np. For the particular example considered in Ref. 1, 
c~lnp/P~lnp~3.4, Olnrl+/Olnp~4.3, and, by Eq.(9), c31nt/ / ~ l n p =  

In r/0/~? In p ~ 5.2. 

4.2. Compressible Newtonian Liquid 

By definition for a Newtonian liquid, the pressure p and the viscosity 
r/+, which reduces to the ordinary Newtonian shear viscosity q, are 
independent of the shear rate, although they depend on the density; also, 
r/_ = r/0 = 0. The solution of Eqs. (10) (13) and (15) for the incompressible 
Newtonian liquid is elementary and well known: 

2a2b2(2 - 1)s 
7 ( r ) -  r2(b 2_a2 ) (21) 

uo(r)=f2r + (2-~blT)a2b2s 1]  ---~ ~ - 7  (22) 

840 6 '6-5 
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P~(r) = Prr(r) = p(r) 

b 2 ]2 
p(r)- p(b)= - p  {~ f22II +(2-1)-~f---~_a2 j ( b 2 - r  2) 

a2b2 I i + ( 2 _ l ) b 2 b 2 a  2] - 2/22(2 - 1) 

1 )2/22( c/2b2 ~2( 1 ~2)} 
+ (,z- 1 \b --vsT] \ 7 -  

l n _  b 
r 

(23) 

(24) 

For 2 = 0, Eq. (24) together with Eq. (18) describes a depression of the 
free surface at r = a and a nearly flat free-surface profile near r = b. It is 
interesting to note that the solution is independent of viscosity. For the 
choice of parameters listed below Eq. (9), Pzz(a)- P=(b) = -1.167 x 10 3, 
approximately 2 % of the enhanced depression found for the soft-sphere 
fluid in Ref. 1 [where P=(a)-Pzz(b)= -6.07 x 10-2]. This is consistent 
with the observation that, for the same f2, the depth of depression for a 
Newtonian liquid is much smaller than the height of climbing of a typical 
non-Newtonian liquid [3].  

When compressibility is included, the solution in principle is changed. 
Because of centrifugal effects the pressure and, hence, the density are 
smaller near r=a. The viscosity is therefore also smaller, and from 
Eq. (10), ? is larger. If 2 = 0 ,  uo changes from f2a at r=a to zero at r=b 
more steeply, and the lowered centrifugal force makes p(r)- p(b) slightly 
smaller in absolute value. 

Joseph and Fosdick [5] have solved the equations of motion for both 
the Newtonian liquid and the Rivlin-Erickson non-Newtonian liquid in a 
power series in/2. Although this power series is inappropriate for a liquid 
with rheological properties that are nonanalytic in 7, e.g., Eqs. (5)-(8), it 
appears to be sensible for the Newtonian liquid, so that 3p(r) may be 
expanded in a power series. 

3p(r) =/223p(1)(r) +/243p(Z)(r) + ... (25) 

where 

6P(1)(r)= a+olim[p(r)-p(b)]/f22(~p) +cp (26) 

and cp is a normalization constant needed to satisfy Eq. (17). 
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Equations (10) and (12) may then be linearized in 6p by means of Eqs. 
(19) and (20), and the solution through linear order in 6p may be solved 
analytically. The constant B is altered by a correction 6B, O(f23), and the 
correction to the pressure profile is O((24). The calculation is tedious but 
straightforward and involves only elementary integrations over products of 
powers and logarithms of r. However, the final explicit solutions are 
extremely lengthy and cumbersome, and consequently we quote numerical 
magnitudes for the analytic O(~ 4) correction to p ( a ) -  p(b), in effect the 
depth of depression, only for two specific examples. 

The dimensionless expansion parameter that characterizes the solution 
is (to in r//to In p)(to In p/tO In p) 1 pa2(22/p, which obviously vanishes in the 
incompressible limit. For the parameters listed below Eq. (9) and the zero 
shear-rate pressures and viscosities in Ref. 1 at p = 0.7 (p = 2.375, top/top = 
11.364, q = 1.012 and to~I/toP = 7.019), the change in Ap = p ( a ) -  p(b) is only 
3.67 • 10 7. Our numerical algorithms cannot confirm this result, since 
finite error limits must necessarily be set in the numerical integration and 
root finding subroutines, and the two solutions for p(r) can be made to 
converge only within a finite tolerance, typically between 10 4 and 10 5 

If we set (2 = 2.0, then in the incompressible limit zip = -5.19 • 10 -2, 
comparable to the non-Newtonian solution in Ref. 1. The O(~24) change in 
Ap from the analytic solution is 7.25x 10 4. From our numerical 
algorithm, the two solutions for zip converge to within a difference of 
7.6 x 10 -5. Based on their average, the correction in zip due to finite com- 
pressibility is 9.12 • 10 -4, SO that the analytic correction is 20% smaller. 
However, the expansion parameter here has a value of 0.064, and from 
higher-order terms, the percentage difference is linear in this parameter, so 
the agreement appears to be reasonable. The important point to note is 
that, even with a much larger rotation rate and a comparable depth of 
depression, the corrections due to finite compressibility for the Newtonian 
liquid are still an order of magnitude lower than those for the non-New- 
tonian liquid in Ref. 1. 

We note further that Joseph and Fosdick [5] predict, for the incom- 
pressible Newtonian fluid, corrections proportional to Q4 due to finite 
values of Ur and uz immediately below the free surface. It is difficult to com- 
pare this correction with that due to finite compressibility, since the latter 
depends on the ratio (to~I/toP)/(top/top) and Joseph and Fosdick have 
explicitly solved for the former only in the narrow gap limit ( b - a ) ~ b .  
However, it is reasonable to assume that they are typically comparable in 
magnitude. 

We conclude that the flow profile for the Newtonian liquid in principle 
is altered by finite compressibility effects, but the changes are very small 
and would be very difficult to detect experimentally. 
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4.3. Artificial Weissenbcrg Effect 

According to the solution for the "second-order fluid" due to Joseph 
and Fosdiek [5], a Weissenberg effect can occur provided Pyy-P~x is 
positive and P~z- Pxx is also positive and larger than three-fourths of 
(Pyy-P~x). In terms of generalized viscosities, the equivalent conditions 
are ~/_ >0, ~/o<0, and Iq01 > ~ q - .  

For the solution in Ref. 1, 7(a)= 0.767, and according to Eqs. (7) and 
(8), q_ =0.0245 and ~/o=0.0476. Evidently the presence of a positive q0 
guarantees that an enhanced depression, rather than a Weissenberg effect, 
will occur. 

However, we can create an artificial Weissenberg effect merely by 
changing the sign of Eq. (8) while leaving all other rheological properties of 
the soft-sphere liquid unchanged. While this alteration seems to be 
somewhat contrived, the resulting theological properties, at least 
qualitatively, will more closely resemble those of a typical polymeric non- 
Newtonian liquid, except that the shear dilatancy properties of real 
polymeric liquids are at present unknown. 

The results of the numerical solution for Pzz(r)-P~z(b) are shown in 
Fig. 1. After the first iteration, in which we assume 6p = 0, the solution of 

~176 
~176 , 

N 0.06 ~ .~. 

,~ 0.04 

~ o.o,' 

Fig. 1. 
profile, for the replacement t/0 ~ -tl0 from Eq. (13) for constant p (dashed line), 
from Eq. (14) for constant p (broken line), and the self-consistent solution of 
both equations with compressibility and variable density (solid line). The ver- 
tical axis intercept of the broken line, at 0.2528, is off the scale which has been 
chosen to resolve more clearly the dashed and solid lines. 

-0.02 I I I I I 
0.2 0.4 0.6 0.8 1.0 1.2 

r 
Solutions for P~(r)-P~z(b), proportional to the free-surface height 
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Table I. Difference in Vertical Pressure Tensor Elements 
Between the Two Cylinders [Pzz(a)-P~z(b)] 

603 

Eq. (13), Eq. (14), Self- 
f constant p constant p consistent 6p(a) 

1.0 -0.0697 0.t588 -0.0607 -0.0205 
0.5 -0.0345 0.1823 -0.0298 -0.0196 
0.0 0.0008 0.2058 0.0015 -0.0187 

-0.5 0.0360 0.2293 0.0332 -0.0177 
-1.0 0.0713 0.2528 0.0653 -0.0168 
-1.5 0.1065 0.2762 0.0977 -0.0158 

1.0 a -0.0697 -0.0470 -0.0688 -0.0019 
-1.0 a 0.0713 0.0470 0.0721 0.0021 

a Shear ditatancy removed. 

Eq. (13) yields Pzz(a)-Pzz(b)=O.0713 and the solution of Eq. (14) yields 
Pz~(a) - Pz~(b) = 0.2528. The final, self-consistent solution yields 
Pzz(a)-Pzz(b) =0.0653, or an 8.4% decrease from the initial solution of 
Eq. (13), which may be interpreted as a correction due to finite com- 
pressibility. This may be compared with the 12.9 % decrease in the depth of 
the depression in the solution in Ref. 1 due to finite compressibility correc- 
tions. 

We examine contributions of finite compressibility further by making 
the substitution ~/0~fq0 for a range of values of f in the numerical 
algorithm. Results are listed in Table I for various multiples of t/o, where f 
is the multiplicative factor and t/o is a numerical result from the simulation 
in Ref. 2. The quantity Pzz(a)- Pz~(b) is proportional to the height of the 
rod-climbing effect (positive) or the depth of depression (negative) as the 
case may be. The second column gives the solution in the incompressible 
limit and the fourth column gives the solution with compressibility. 

A Weissenberg effect occurs for all negative values of f .  The difference 
between the values in column 2 and those in column 4 is a measure of the 
contribution from finite compressibility and, in all cases, is at least of the 
order of 10%. We conclude that finite compressibility effects are likely to 
alter the free-surface profile of a fluid exhibiting a Weissenberg effect 
significantly, although not drastically. 

4.4. Removal of  Shear Dilatancy 

The final case which we examine is a compressible non-Newtonian 
liquid without shear dilatancy. The rheological properties of the soft-sphere 
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fluid are used, except that the coefficient of 7 3/2 in Eq. (5) and its density 
derivative are set equal to zero. 

Results of the numerical calculation are shown in Fig. 2. The solution 
of Eqs. (10)-(13) for constant p is, necessarily, identical to that in Ref. 1, 
i.e., P=(a)- P=(b)= -0.0697, but the constant-density solution of Eq. (14) 
gives P=(a)- P=(b)= -0.0470, in contrast to the value 0.1588 from Ref. 1. 
The self-consistent value is -0.0688, or a correction due to finite com- 
pressibility of only 1.3 %. Furthermore, 6p is an order of magnitude smaller 
than the solution in the presence of shear dilatancy. 

We also consider the case in which shear dilatancy is removed and, 
simultaneously, the sign of r/o is reversed. Both results, denoted by footnote 
a, are presented in Table I; once again, the contributions due to finite com- 
pressibility are very small. 

Our conclusion is that shear dilatancy and the sensitivity of the cylin- 
drical flow problem to finite compressibility are closely related. An intuitive 
physical explanation is as follows: since 7 is large near r - -a ,  the pressure 
must increase due to shear dilatancy. To counterbalance this increase so 
that the equations of motion are satisfied, the density must decrease near 
r = a. But since the normal pressure differences which give rise to an enhan- 
ced depression or Weissenberg effect are sensitive functions of density, the 
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-0.0,3 / 
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-O'OIV 
-0"06 r 

- 0 . 0 ~  t I I 
0.2 0.4 0.6 I I I 0.8 1.0 1.2 

Fig. 2. Solutions for P=(r)-P=(b) for the compressible liquid with shear 
dilatancy removed, from Eq. (13) for constant p (solid line) and from Eq. (14) 
for constant p (broken line). To within the resolution of the figure, the final self- 
consistent solution is indistinguishable from the solid line. 



Non-Newtonian Flow and Compressibility 605 

pressure and •e-surface height profiles are significantly altered. In con- 
trast, in the absence of shear dilatancy the changes due to finite com- 
pressibility are very small and their neglect may be justified. 
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